Chem. Ber. 105, 95-102 (1972)

Fritz Weigel und Victor Wishnevsky

Die Dampfphasenhydrolyse von Lanthaniden(III)-chloriden, 41)

Wärmetönung und Gibbs-Energie der Reaktion MCl₃(f) + H₂O(g) \implies MOCl(f) + 2HCl(g) (M = Yb, Lu)

Aus der radiochemischen Abteilung des Instituts für Anorganische Chemie der Universität München

(Eingegangen am 20. September 1971)

Mit Hilfe der in der 2. Mitteilung^{1b)} beschriebenen Apparatur wurden die Gleichgewichtskonstanten der Reaktion

$$MCl_3(f) + H_2O(g) \Leftrightarrow MOCl(f) + 2HCl(g), M = Yb, Lu$$

in geeigneten Temperaturbereichen als Funktionen der Temperatur gemessen. Unter Verwendung der in der 2. Mitteilung angegebenen Gleichungen für ΔC_{p} , ΔG_{T}^{0} und ΔH_{T}^{0} wurden die thermodynamischen Parameter für die obigen Reaktionen bestimmt. Die Bildungswärme von Ytterbium(III)-oxidchlorid wurde zu ΔH_{298}^{0} [YbOCl] = -229.8 kcal/Mol, diejenige von Lutetium(III)-oxidchlorid zu ΔH_{298}^{0} [LuOCl] = -228.2 kcal/Mol gefunden.

The Vapor Phase Hydrolysis of Lanthanide(III) Chlorides, 4¹⁾

Heat and Free Energy of the Reaction $MCl_3(s) + H_2O(g) \Leftrightarrow MOCl(s) + 2HCl(g) (M = Yb, Lu)$

By means of the apparatus described in the second report of this series^{1b}), the equilibrium constants of the reaction

 $MCl_3(s) + H_2O(g) \Leftrightarrow MOCl(s) + 2HCl(g)$, where M = Yb, Lu,

were measured within suitable temperature ranges as functions of reaction temperature. Using the equations for $\Delta C_{p,} \Delta G_T^0$, and ΔH_T^0 given in the second report, the thermodynamic parameters of the above reactions were determined. The heat of formation of ytterbium(III) oxychloride was found to be ΔH_{298}^0 [YbOCl] = -229.8 kcal/mole, that of lutetium(III) oxychloride to be ΔH_{208}^0 [LuOCl] = -228.2 kcal/mole.

In der 1. Mitteil. dieser Reihe^{1a)} haben wir über die Messung des Dampfphasenhydrolysegleichgewichts

$$MCl_{3}(f) + H_{2}O(g) \xleftarrow{K_{p}} MoCl(f) + 2HCl(g)$$
(1)

für M = Ho berichtet, in der 2. Mitteil.^{1b)} über analoge Messungen mit M = Dy und in der 3. Mitteil.^{1c)} über entsprechende Messungen an M = Er und Tm. In der vorliegenden 4. Mitteil. wird nunmehr über die Ausdehnung der Messungen auf M = Ybund Lu berichtet.

95

¹⁾ ^{1a)} 1. Mitteil.: F. Weigel und H. Haug, Chem. Ber. 94, 1548 (1961).

^{1b)} 2. Mitteil.: F. Weigel und V. Wishnevsky, Chem. Ber. 102, 5 (1969).

¹c) 3. Mitteil.: E. Weigel und V. Wishnevsky, Chem. Ber. 103, 193 (1970).

Es erübrigt sich, an dieser Stelle erneut auf die Meßmethode einzugehen, da diese früher eingehend beschrieben wurde²⁾. Auch im vorliegenden Fall gilt die Gleichung (2) aus der 3. Mitteil.:

$$K_p = \frac{p_{\rm HCl}^2}{p_{\rm H_2O}} = K_p (T)$$
⁽²⁾

Gearbeitet wurde wiederum in der Weise, daß die Gewichtszu- bzw. Gewichtsabnahme eines MCl₃-Präparates auf einer *Salvioni*-Quarzfadenwaage bei gegebener Temperatur T° K und vorgegebenem Partialdruckverhältnis $p_{HCl}: p_{H_2O}$ gemessen wurde und der durch Gleichung (2) definierte K_p -Wert zwischen einem Maximal- und einem Minimalwert eingegabelt wurde. Gegenüber den vorhergegangenen Messungen boten jedoch diejenigen an Yb und Lu eine Besonderheit: Es mußte bei extrem hohen HCl-Partialdrucken gearbeitet werden, außerdem war beim Yb darauf zu achten, daß unter den gewählten Arbeitsbedingungen keine Reduktion zu Yb²⁺ auftreten konnte.

Ergebnisse

Ytterbium(III)-chlorid

Die erwartete Reduktion von YbCl₃ zu YbCl₂ wurde nicht beobachtet. Auch beim Arbeiten mit Stickstoff als Trägergas konnten im Bodenkörper nur YbCl₃ und YbOCl röntgenographisch nachgewiesen werden. Die voll durchchlorierten Produkte erwiesen sich röntgenographisch als reines YbCl₃ (Tab. 3), als Endprodukt der Dampfphasenhydrolyse erscheint YbOCl, das hexagonal kristallisiert und isomorph mit β -ErOCl ist. Eine Indizierung mit den von *Eick*³ erstmals bestimmten Gitterkonstanten a = 3.726 Å und $c = 55.60_6$ Å war jedoch mit genügender Genauigkeit nicht möglich. Das bei der Dampfphasenhydrolyse entstandene YbOCl fiel nämlich stets in stark gittergestörter Form an, so daß die Röntgendiagramme diffuse Linien zeigten. Der Vergleich mit auf andere Weise erhaltenem YbOCl zeigte jedoch weitgehende Analogie, so daß die Identität des Hydrolyseproduktes mit YbOCl wohl außer Zweifel steht.

Unter den von uns gewählten Hydrolysebedingungen tritt stets das hexagonale, gittergestörte YbOCl auf. Die zweite, zum Yb₂O₃ führende Hydrolysestufe wurde nie beobachtet. Die Hydrolysegeschwindigkeit von frisch bereitetem YbCl₃ war genügend hoch, um auch bei starker Annäherung an den wahren K_p -Wert noch meßbare Gewichtszu- bzw. -abnahme auftreten zu lassen. Es war infolgedessen möglich, bei allen Meßtemperaturen die K_p -Wert mit relativ hoher Genauigkeit zu messen.

Tab. 1 gibt die Auswertung der Hydrolysedaten von YbCl₃, in Tab. 2 sind die sich daraus berechnenden thermodynamischen Parameter zusammengestellt, wobei zur Berechnung die Beziehungen (2) bis (5) der 2. Mitteil.^{1b)} benutzt wurden. Wird für die Bildungswärme von YbCl₃ der von *Stuve*⁴⁾ gemessene Wert ΔH_{298}^0 [YbCl₃] = -229.4 kcal/Mol zugrundegelegt, so ergibt sich für die Bildungswärme von Ytterbium(III)-oxidchlorid:

 ΔH_{298}° [YbOCl] = -229.8 kcal/Mol

²⁾ Ausführliche Literaturangaben vgl. 1.-3. Mitteil.¹⁾.

³⁾ H. A. Eick, Privatmitteil. an F. Weigel, Michigan State University, 27. April 1971.

⁴⁾ J. M. Stuve, Report BM-RI-6705 (1965).

Хb
1
Z
für
Ξ
Reaktion
von
Parameter 1
ermodynamischen
ц.
dei
Ermittlung
zur
. Meßwerte
o. 1
Tat

T (°K)	T ⁻¹ (°K-1)	PLuft (Torr)	PHCI (Torr)	PH2O (Torr)	K _{pmax} K _{pmin}	$\check{K_p}$	ΔG_T^{0} (kcal/Mol) exp. ber.	م (kcal/Mol)
875	1.1429 • 10-3	7.09.7 709.9	625.29 608.2 ₃	0.8150 0.8274 ₅	631.2 588.3	609.7 ± 21.5	-11.14 -11.18	+0.04
839	1.1919 10-3	718.0 718.3	571.86 557.76	0.8981 0.9108	479.1 449.4	$\textbf{464.2} \pm \textbf{14.9}$	-10.23 -10.25	+0.02
816	1.2255 • 10-3	721.8 721.8	554.4 ₃ 545.7 ₆	1.022_{2} 1.048_{2}	395.7 373.9	384.8 ± 10.9	9.659.65	0
786	1.2723 • 10-3	722.4 722.3	492.7_8 479.0_6	1.039_{2} 1.059_{0}	307.5 285.1	296.3 土 11.2		0.02
764	1.3089 • 10-3	708.8 709.0	442.2 ₆ 432.7 ₉	1.050_0 1.057_1	245.3 233.1	$\textbf{239.2} \pm \textbf{6.10}$	-8.318.28	0.03
743	1.3459 • 10-3	727.2 727.0	434.0 ₇ 426.1 ₃	1.313 ₂ 1.319 ₁	188.8 181.1	184.9 ± 3.85	-7.70 -7.73	+0.03
721	1.3870 • 10-3	720.8 721.1	433.1 ₃ 420.3 ₉	1.687_3 1.699_2	146.3 136.8 ₅	141.6 ± 4.70	-7.09 -7.15	+0.06
669	1.4306 • 10-3	723.1 · 723.6	388.8 ₆ 379.1 ₆	1.706_{6} 1.722_{3}	116.6 109.8	113.2 ± 3.40	-6.56 -6.56	0
							Maximalabweic Mittlere Abwei	hung +0.06 chung 0.025

7

1 - 700 K		
 Parameter		
ΔG_{785}^{0} (kcal/Mol)	-8.8	<u> </u>
ΔH_{785} (kcal/Mol)	+11.8	
ΔS_{785}^0 (cal/Mol·Grad)	+26.3	
ΔG_{298}^{0} (kcal/Mol)	+4.5	
$\Delta H_{_{298}}$ (kcal/Mol)	+13.2	
ΔS_{298}° (cal/Mol · Grad)	+-29.1	
ΔH_0 (kcal/Mol)	$+14.1_{3}$	
I (cal/Mol · Grad)	47.89	

Tab. 2. Thermodynamische Parameter der Reaktion (1) mit M = Yb für $T = 298^{\circ}$ K und $T = 785^{\circ}$ K

Tab. 3. Auswertung des Röntgendiagramms von YbCl₃ (Cu_{Ka}-Strahlung, Ni-Folic vor dem Film) mit Hilfe der folgenden Gitterkonstanten: a = 6.73 Å, b = 11.68 Å, c = 6.38 Å, $\beta = 110.4^{\circ}$, YCl₃-Typ, Raumgruppe C2/m - C³_{2h}, monoklin, 4 Einheiten in der Elementarzelle

Nr.	Ι	Okorr.	sin ² _{gem.}	sin ² Ober.	$\Delta \cdot 10^4$	hkl	
1	10	7.26	0.0159	0.0166	+6	001	
2	9	13.39	0.0536	{ 0.0541	+5	130	
3	9	16.59	0.0815	0.0544	+8 +2	$ \begin{array}{c} 2 & 0 & 1 \\ 1 & 3 & 1 \\ \overline{} & \overline{} & \overline{} \\ \end{array} $	
				0.0823	$^{+8}_{-3}$	$\begin{array}{c} 2 & 0 & 2 \\ 2 & 0 & 1 \end{array}$	
4	5	18.30	0.0986	0.0986	0 +3	$\frac{1}{1}$ 3 2 2 3 0	
5	3	20.51	0.1227	0.1225	-2	311	
6	1	21.01	0.1285	(0.1291 0.1294	+6 +9	$\overline{1}$ 4 2 2 4 0	
7	2	22.11	0.1416	0.1426	+10	132	
8	2	22.71	0.1491	0.1495	+4	003	
9	8	23.32	0.1567	0.1567	0	060	
10	7	24.58	0.1730	(0.1730 (0.1736	0 +6	1 4 2 3 3 0	
11	3	27.33	0.2108	0.2110 0.2116	+2 +8	$\frac{1}{4}$ 6 1	
12	3	78 44	0 2268	0 2269	±1	3 5 1	
13	3	29.35	0.2402	0.2397	-5	242	
15	5	27.55	0.2 102	0.2404	+2	153	

Lutetium(III)-chlorid

Im Fall der Hydrolyse des Lutetium(III)-chlorids wurde mit $K_{p \max} = 745.5$ der im Verlauf der gesamten Untersuchungsreihe bisher höchste K_p -Wert realisiert und damit die erwartete Leistungsfähigkeit der in der 2. Mitteil. beschriebenen Apparatur bestätigt. Als Bodenkörper wurden bei der Hydrolyse von LuCl₃ röntgenographisch LuCl₃ und LuOCl nachgewiesen, die 2. Hydrolysestufe Lu₂O₃ wurde unter den von uns gewählten Bedingungen nicht erhalten. Das voll durchchlorierte Ausgangsprodukt erwies sich röntgenographisch als im YCl₃-Typ monoklin kristallisiertes LuCl₃, das Produkt der 1. Hydrolysestufe ist LuOCl, das im Typ von β -ErOCl kristallisiert und

Lu
Σ
für
Ξ
Reaktion
von
Parameter
thermodynamischen
der
Ermittlung
zur
4. Meßwerte
ġ.
Ta

T (°K)	T ⁻¹ (°K-1)	PLuft (Torr)	PHCI (Torr)	PH2O (Torr)	K _{Pmax} K _{Pmin}	$ar{K}_p$	ΔG_T^0 (kcal/Mo exp. ber	l) ∆ . (kcal/Mo	
877	1.1403 · 10 ⁻³	720.5 720.7	635.3_1 624.1_0	0.7123 ₇ 0.7215 ₅	745.5 710.3	727.9 土 17.6	-11.4811.	49 +0.01	
839	1.1919 • 10-3	720.5 720.5	563.88 548.9 ₁	0.7421 ₈ 0.7507 ₃	563.7 528.1	545.9 土 17.8	-10.50 -10.	490.01	
806	1.2407 · 10-3	719.2 719.2	520.44 507.82	0.8530 ₆ 0.8737 ₈	417.8 388.3	403.0 土 14.75		63 +0.03	
786	1.2723 · 10 ⁻³	719.2 719.4	486.55 472.7 ₂	0.8913₀ 0.9013 ₈	3 49.5 326.2	337.8 ± 11.65	60.69.	0 60	
762	1.3123 · 10 ⁻³	720.7 720.6	492.2 ₆ 483.8 ₅	1.157 ₉ 1.170 ₁	275.4 263.3	269.3 ± 6.00		46 —0.01	
737	1.3569 · 10 ⁻³	713.2 714.3	442.2 ₆ 433.4 ₂	1.204_9 1.215_4	213.6 203.4	208.5 ± 5.1	7.82 7.	80 0.02	
719	1.3908 · 10 ⁻³	719.9 720.1	414.4 ₂ 404.6 ₈	1.339_{7} 1.343_{7}	168.7 160.4	164.5 ± 4.15	-7.29 -7.	31 +0.02	
702	1,4245 • 10 ⁻³	717.9 718.2	382.54 369.6 ₆	1.366 ₉ 1.363 ₅	140.9 131.9	136.4 土 4.5	6.856.	85 0	
							Maximalabw Mittlere Abw	eichung +0.03 eichung ±0.01	

isomorph mit dem von *Eick*³⁾ beschriebenen YbOCl ist. Auch hier waren bei den durch Dampfphasenhydrolyse erhaltenen Produkten keine scharfen Röntgendiagramme zu beobachten, die Identifizierung stützt sich auf den Vergleich der Röntgendiagramme mit solchen von LuOCl und YbOCl, die auf anderem Wege erhalten wurden.

Auch beim frisch bereiteten LuCl₃ war die Hydrolysegeschwindigkeit bei allen Untersuchungstemperaturen hoch genug, daß auch in nächster Nähe der wahren K_p -Werte noch meßbare Gewichtszu- und -abnahmen beobachtet werden konnten. Eine recht genaue Bestimmung der K_p -Werte war somit auch in diesem Falle möglich.

Tab. 4 gibt die Auswertung der Hydrolysedaten von LuCl₃, in Tab. 5 sind die sich daraus berechneten thermodynamischen Parameter zusammengestellt, wobei wiederum die in der 2. Mitteil. ^{1b)} angegebenen Gleichungen (2) bis (5) verwendet wurden. Setzt man für die Bildungswärme von LuCl₃ den von *Bommer* und *Hohmann*⁵⁾ gemessenen Wert ΔH_{298}^0 [LuCl₃] = -227.8 kcal/Mol an, so ergibt sich für die Bildungswärme von LuCCl:

$$\Delta H_{298}^{\circ}[LuOCi] = -228.2 \text{ kcal/Mol}$$

Tab. 5. Thermodynamische Parameter der Reaktion (1) mit M = Lu für $T = 298^{\circ}$ K und $T = 785^{\circ}$ K

Parameter		
 ΔG_{785}^{0} (kcal/Mol)	-9.1	
ΔH_{785} (kcal/Mol)	+11.7	
ΔS_{785}^{0} (cal/Mol · Grad)	+26.5	
ΔG_{298}^{0} (kcal/Mol)	4.4	
ΔH_{208} (kcal/Mol)	+13.15	
ΔS_{208}^{0} (cal/Mol · Grad)	+29.4	
ΔH_0 (kcal/Mol)	- - 14.0 7	
I (cal/Mol·Grad)	-48.11	

Diskussion und Ergebnisse

Durch die vorliegenden Messungen konnten die Dampfphasenhydrolyseuntersuchungen an Lanthaniden(III)-chloriden nunmehr bis zum Ende der Lanthanidenreihe vorgetrieben werden. Es fehlen in der jetzt fast lückenlosen Reihe nur noch die Trichloride CeCl₃ und EuCl₃, deren Untersuchung aus den in der 3. Mitteil. ^{1c)} genannten Gründen zunächst zurückgestellt wurde.

Die Messungen am TbCl₃ stehen kurz vor dem Abschluß, es wird darüber zu einem späteren Zeitpunkt berichtet.

Zu den im Rahmen der vorliegenden Arbeit ausgeführten Messungen kann folgendes gesagt werden:

1) Die $\ln K_p = f(T^{-1})$ -Geraden für YbCl₃ und LuCl₃ liegen wie erwartet oberhalb der entsprechenden Geraden von TmCl₃. Irgendwelche Anomalien treten nicht auf.

2) Im Gegensatz zu EuCl₃, das unter den Bedingungen der Dampfphasenhydrolyse zu EuCl₂ bzw. Eu²⁺ reduziert wird, tritt im Fall von YbCl₃ keine Reduktion zum zweiwertigen Zustand auf. Es ist infolgedessen nicht erforderlich, in O_2 als Trägergas zu arbeiten.

⁵⁾ H. Bommer und E. Hohmann, Z. anorg. allg. Chem. 248, 373 (1941).

Nr.	Ι	Θ _{korr.}	sin ² _{gem.}	sin ² _{ber} .	Δ·104	h k l
1	7	7.37	0.0165	0.0166	+1	001
2	2	8.03	0.0196	0.0194		$\frac{1}{1}$
3	2.5	8.99	0.0244	0.0249	+5	
4	2	10.57	0.0336	0.0342	-+ 0	
5	I	12.41	0.0462	0.0469	+/	-
6	7	13.49	0.0544	(0.0545	+1	201
				0.0547	+3	130
-	10	16.67	0.0000	(0.0822	-1	$\bar{2}$ 0 2
/	10	16.67	0.0823	0.0823	0	131
				(0.0004	0	201
				0.0984		1 2 0 1
8	3.5	18.36	0.0992			132
				0.0997	- J	230
				0.0999	+/	222
9	1	19.87	0.1156	0.1161	+5	221
				(0.1429	7	132
10	3	22.27	0.1436	0.1431	-5	$\bar{2}$ 0 3
	-			0 1432	4	312
				0.1452	-	512
11	5	72 57	0 1500	0.1590	-9	060
11	5	16.04	0.1377	0.1607	+8	223
12	5	24.48	0.1717	0.1708	-9	ī 3 3
13	2	28.00	0.2204	0.2197	-7	043
14	4	29.49	0.2423	0.2415	-8	153

Tab. 6. Auswertung des Röntgendiagramms von LuCl₃ (Cu_{Ka}-Strahlung, Ni-Folie vor dem Film) mit Hilfe der folgenden Gitterkonstanten: a = 6.72 Å, b = 11.60 Å, c = 6.39 Å, $\beta = 110.4^{\circ}$, YCl₃-Typ, Raumgruppe C2/m – C³_{2h}, monoklin, 4 Einheiten in der Elementarzelle

3) Beim LuCl₃ treten erstmals K_p -Werte in der Größenordnung 700 auf. Der höchste bisher gemessene K_p -Wert ($K_{p \max} = 745.5$) liegt ca. 515 Einheiten oberhalb des höchsten K_p -Wertes bei HoCl₃^{1a}) ($K_{p \max} = 229.97$), der etwa die obere Leistungsgrenze der klassischen Apparatur von *Cunningham*, Koch und Broido markiert. Die in der 3. Mitteil.^{1c}) ausgesprochene Erwartung bezüglich der Leistungsfähigkeit unserer Apparatur wurde damit vollauf erfüllt. Die Realisierung der im vorliegenden Fall erforderlich gewesenen Partialdruckverhältnisse bedurfte jedoch eines Kunstgriffes, nämlich des Arbeitens mit stark gekühlter, an HCl-Gas bei niedriger Temperatur gesättigter Salzsäure in einem seinerseits auf ca. 10°C eingestellten Thermostaten.

4) Auch bei der Hydrolyse von YbCl₃ und LuCl₃ besteht zwischen $\Delta G^{\circ}_{T(\text{gem.})}$ und $\Delta G^{\circ}_{T(\text{ber.})}$ sehr gute Übereinstimmung. Damit ist gezeigt, daß die Gleichungen von Broido, Koch und Cunningham für $\Delta G^{\circ}_{T(\text{ber.})}$ und ΔC_p auf die Hydrolyse aller Lanthaniden(111)-chloride bis hinauf zum Lutetium anwendbar sind.

5) Auch in den vorliegenden Fällen liegen die Entropiewerte in der richtigen Größenordnung. Nach der Regel von *Latimer*⁶⁾ ergibt sich für die Erwartungswerte der Entropie ΔS_{298}^0 :

⁶⁾ W. M. Latimer, Oxidation Potentials, 4th Ed., S. 359ff., Prentice Hall Inc., Englewood Cliffs, N. J. 1959.

	M = Yb	M = Lu
S ⁰ ₂₉₈ [MOCl] (cal/Mol · Grad)	22.1	22.2
$+ S_{298}^{0}$ [2HCl] (cal/Mol·Grad)	89.27)	89.27)
$- S_{298}^{0}$ [MCl ₃] (cal/Mol·Grad)	35.4	35.5
$- S_{298}^{0}[H_2O]$ (cal/Mol·Grad)	45.17)	45.17)
$=\Delta S_{298}^{0}$ (cal/Mol·Grad)	30.8	30.8
$\Delta S_{298}^{0}(exp.)$ (cal/Mol·Grad)	29 .1	29.4
Differenz	1.7	1.4

Herrn Professor Dr. H. A. Eick, Michigan State University, East Lansing, Mich., danken wir für die Überlassung der Gitterdaten der Oxidchloride TmOCl und YbOCl, dem Bundesministerium für Bildung und Wissenschaft, der Kommission für Transuranforschung der Bayerischen Akademie der Wissenschaften und dem Fonds der Chemischen Industrie danken wir für die finanzielle Unterstützung dieser Arbeit, Frl. Helga Zebisch für die Mitwirkung bei den teilweise sehr langwierigen Versuchen.

Beschreibung der Versuche

Ausgangsmaterialien

Neodym (Eichsubstanz): Nd₂O₃ (99.9%) der Firma Research Chemicals Inc., Burbank, Calif.

Ytterbium: Yb2O3 (99.9%) der Firma Research Chemicals Inc. Burbank, Calif.

Lutetium: Lu₂O₃ (99.9%) der Firma Kurt Rasmus, Hamburg.

HCl-Gas: Handelsübliches HCl-Gas aus der Bombe.

N2-Gas: Bombenstickstoff, nachgereinigt, der Firma Linde's Eismaschinen.

Magnesiumperchlorat: Merck p.A.

Natronasbest: Merck p.A.

Alle Lanthanidenpräparate wurden von Herrn W. Schuster und Herrn J. Bauer spektrographisch nach der Kupferfunkenmethode auf Reinheit geprüft. Die angegebene Reinheit von 99.9% wurde für alle Präparate bestätigt.

Apparatives

Die Dampfphasenhydrolysemessungen wurden in der in Abbild. 1 der 2. Mitteil. ^{1b}) beschriebenen Apparatur ausgeführt. Arbeits- und Analysenmethoden waren die gleichen wie dort angegeben. Thermostaten- und Ofentemperaturen wurden jedoch den hier geforderten Bedingungen angepaßt und so gewählt, daß sie den hier zu realisierenden K_p -Werten entsprachen.

⁷⁾ Zahlenwerte nach Rossini: NBS Circular 500 USGPO Washington.

[360/71]